在上一篇文章中,我们深入探讨了检索增强生成(Retrieval-Augmented Generation,RAG)的核心架构原理。这种创新性地将大型语言模型(LLMs)与信息检索系统相结合的技术范式,显著提升了生成内容的准确性与可追溯性。然而,当基础RAG方案部署到实际生产环境时,工程团队往往会面临四大关键挑战:实时响应性能的优化瓶颈、检索结果相关性的提升需求、复杂上下文理解能力的增强要求,以及生成内容事实一致性的保障难题。
本文将系统性阐述RAG性能优化的系统性技术方案,包括架构设计的工程优化策略,分析检索算法在效率与精度之间的平衡方法,以及领域自适应微调的核心技术要点,并重点介绍最新的自主代理式RAG(Agentic RAG)实现路径。通过这种多维度、多层次的技术升级与创新实践,开发者能够构建出真正满足企业级严苛要求的下一代RAG系统。
快速回顾:什么是RAG?
检索增强生成(Retrieval-Augmented Generation,简称RAG)由两个核心模块组成:
* 检索器(Retriever):通过稠密或稀疏检索方法,从外部知识库中提取排名前k的相关文档。